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Test of finite-size scaling predictions in three dimensions 
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Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, 
Russia 

Received 30 September 1991 

Abstract. A constrained monomer-dimer (CMD) model on decorated hypercubic lattices, 
which is exactly solvable in any dimensionality 4 is studied, The model is critical in the 
limit of maximal packing of the dimer canfigurations allowed by the constraint. For d = 2 
it is equivalent to the rooted-tree model on the square lattice considered by Duplantier 
and David. The validity of two finite-size scaling predictions in higher dimensionalities is 
studied: (i) the existence of logarithmic corrections in the free energy due to comers, and 
(ii) the amplitude-exponent relation for the pair correlation function. The logarithmic 
finite-size corrections are obtained for arbitrary d, for boundary conditions which are 
periodic for d ' a O  dimensions and free in the remaining d - d' dimensions. Dimer-dimer 
correlation functions are studied at d = 3 for a system finite in two dimensions and infinite 
in the third. If is shown that the amplitude-exponent relation for the CMD model holds 
for d = 2 and breaks down for d =3. 

1. Introduction 

There are two important finite-size predictions of the conformal theory of two- 
dimensional systems at criticality [ l ]  (for a review see [Z]) which have been generalized 
to higher dimensionalities: these are the logarithmic corrections to the free energy 
arising from corners [3], and the amplitude-exponent relation [4]. 

In the first case one considers a fully finite system of characteristic size L with 
non-smooth boundaries and free (non-periodic) boundary conditions. As was shown 
by Cardy and Peschel [3], the free energy of two-dimensional conformally invariant 
models on manifolds with Euler number ,y = 0 contains logarithmic finite-size correc- 
tions, AF""'"", arising from each comer with interior angle y, 

where c is the conformal anomaly number. By using finite-size scaling arguments 
Privman [ 5 ]  has predicted similar corrections for systems of arbitrary dimensionality d, 

with some universal amplitudes yj  attributed to each corner. 
In the second case one considers a system infinite in one dimension and finite in 

the other dimensions. For a two-dimensional infinitely long strip of width L, the 

t On leave from the Institute of Mechanics and Biomechanics, Bulgarian Academy of Sciences, 1113 Sofia, 
Bulgaria. 
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correlation functions of a scaling operator 4i decay exponentially along the strip with 
a correlation length L. Cardy [4] has shown that, as a consequence of conformal 
invariance, the proportionality coefficient turns out to be simply related to the exponent 
2xi of the algebraic decay of the two-point correlation function for the corresponding 
critical infinite-plane system: 
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This observation motivated Henkel [6] to ask whether the linear relation between the 
bulk critical exponent x and the finite-size scaling amplitude A holds in three 
dimensions. 

The extension to higher dimensionality of both of the predictions (1.2) and (1.3) 
has been checked by the example of a few models. 

Logarithmic contributions in the free energy, AF'", at arbitrary dimensionality and 
three different types of boundary conditions, have been obtained in a Gaussian-type 
model by Gelfand and Fisher [7]; these contributions were found to  arise in the small 
block limit due to the zero-eigenvalue mode. Here we quote the corresponding results 
for a massive Gaussian model on a d-dimensional hypercubic lattice of unit spacing, 
when the linear size L+ 00 and the mass m + 0, so that mL+ 0: (i) for free boundary 
conditions 

( 1 - 2 / )  In(mL) (1.4) AFP"~== = 

(ii) for fxed boundary conditions 

(1.5) 
(I),fircd - d f l  - d  AFG - ( - I )  2 In(mL) 

(iii) for periodic boundary conditions 

(1.6) 

Note that both conformal theory [3] and finite-size scaling arguments [5] predict 
that logarithmic corner corrections to  the free energy density should be absent for 
periodic boundary conditions. However, such terms have been found by Duplantier 
and David [8] in the two-dimensional conformally invariant spanning tree (ST) model 

( d = 2 )  (1.7) 

pF~I.P"'"d'' = In( mL), 

bath ??ndcr $ee, 
pF'".f"'- ST - - $ 1 n r  

AFgFdiC = -2 In L ( d = 2 )  (1.8) 

and periodic 

boundary conditions. 
Finally, we mention that the logarithmic corner corrections in the three-dimensional 

king model with free boundary conditions have been studied numerically by Lai and 
Mon [9]. They have found that the Monte Carlo data for the contribution to the free 
energy from the corners has the form 

AFY)."'= U In L+const (1.9) 

and obtained the following estimates for the universal amplitude: 

for the simple cubic lattice 
for the body-centred cubic lattice. 

(1.10) 
0.009 * 0.005 
0.012* 0.003 
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As far as the amplitude-exponent relation (1.3) in higher dimensions is concerned, 
Henkel[6] studied the critical (2+ 1)-dimensional king model infinite in one direction 
but finite in the other two directions, with antiperiodic boundary conditions. He 
obtained a numerical evidence for the relation 

A,l A, = x,/xu (1.11) 

where the subscripts m and E denote the spin-spin and energy-energy correlations, 
respectively. Somewhat later, Henkel [IO] considered the critical spherical model in 
the same geometry and proved that the equality (1.11) is exact both for periodic and 
antiperiodic boundary conditions. 

T h e  aim of this work is to test the predictions (1.2) and (1.3) in the case of another 
exactly solvable three-dimensional model, namely the constrained monomer-dimer 
(CMD) model [ I l l .  

T h e  main results may be summarized as follows: 
(i) The difference in the free energies Fd,o- Fd,d. of the d-dimensional CMD model, 

with Fd,,, corresponding to fully free boundary conditions, and Fd,d. corresponding to 
periodic boundaries in d ’ a  1 dimensions and free boundaries in the remaining d -d’ 
dimensions, contains the logarithmic correction term 21-d In L which comes from the 
2d comers of the system with linear size L. 

(ii) A comparison of two different dimer-dimer correlation functions of the CMD 

model shows that the amplitude-exponent relation holds in d = 2 dimensions and 
breaks down in d = 3 dimensions for both periodic and antiperiodic boundary condi- 
tions. 

Section 2 contains the formulation of the model. In section 3 the logarithmic 
finite-size corrections under different boundary conditions are derived. Section 4 is 
devoted to the test of the amplitude-exponent relations. A short discussion is given 
in the final section. 

2. The model 

To formulate the model, consider the d-dimensional simple hypercubic lattice Zd. Put 
an additionai site ai the micidie of each iaiiice bond. Tniis, one geis a iaiiice 23, a 
two-dimensional analogue of which, Zf, is shown in figure 1. 

The monomer-dimer problem on 3; consists of enumerating all possible arrange- 
ments of non-intersecting dimers, i.e. of two-atomic molecules occupying two neigh- 
bouring sites of the lattice (see figure 1). We require also that any closed contour on 

t 
Figure 1. An example of an allowed dimer configuration for d =2. Sites of the quadratic 
lattice Z2 are shown by open circles, the decorated lattice 3: consists of open and solid 
circles; dimen are represented by black bars. 
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2'5 passing through 2n sites should not pass along more than (n - 1) dimers. We call 
the resulting model the CMD problem [ll]. The partition function of the model is 

J G Brankov and V B Priezzhev 

Nd 

A b ) =  1 zkg(k )  (2.1) 
k - 0  

where g ( k )  is the number of allowed arrangements of k dimers on the given lattice 
and Nd is the number of sites of the lattice Z d .  It has been shown in [ 121 that the 
above-formulated model is equivalent to the rooted-tree model which can be solved 
in arbitrary dimensions by the Kirhhoff theorem (see [8] for references), 

To establish this equivalence, it is convenient to regard a collection of dimers on 
the lattice 3'5 as a set of arrows on the lattice zd. An arrow is attached to a site s of 
Zd if the corresponding site of Zd is occupied by a dimer. An arrow occupying a site 
s is directed from s along the bond of 2'd occupied by a dimer to the nearest neighbour 
s'. We say that the arrow generates a path ss' from s to s'. A collection of paths of 
the form s,s2, s2sJ,. . . , s._,s., generated by arrows at the sites s,, s2 , .  . . , s . _ ~ ,  is a 
path from s, to s,. If the site s. coincides with the site sI, the path s,s. is closed. If 
there is no arrow at the site s., this site is the end-point of the path s,s.. 

A set of configurations of n arrows generating no closed paths is in one-to-one 
correspondence with the set of allowed dimer configurations on 22. There is no 
diEc:!ty i" sho\.ring thzt ezch cn&g:rztinn af zrraws ccrrespands tc one m d  nn!y 
one configuration of rooted trees. Indeed, consider an arbitrary configuration of arrows 
which generates a collection of paths ending at sites s,, s2,. . . , s.. Then a collection 
of bonds belonging to all paths that end at a site sj forms a tree having the root sj. 
Since any two paths ending at different sites have no common elements, each tree has 
exactly one root. 

Conversely, let % be a configuration of trees having the roots s, , s2,. . . , s.. Consider 
a tree whose root is sj. Ascribe to each vertex s of the tree an arrow directed from s 
to the nearest neighbour s' for which the distance (the number of connected bonds) 
between s' and s, is minimal. Repeating this construction for every tree we get an 
arrow configuration. Thus, the required one-to-one correspondence between the rooted- 
tree model and the CMD model is established. 

Let us return to the original cubic lattice zd and introduce an adjacency matrix C 
as the matrix, whose elements Cn,m are labelled by the vertices of Zd and are defined 
as follows: 

if n # m and n, m are nearest neighbours 

otherwise. 
if n = m  (2.2) 

The solution of the CMD problem is [ l l ]  

A(z)  = det(C+ I). (2.3) 

For a lattice of the block geometry L, x . . , x 4, with periodic, antiperiodic or free 
boundary conditions, equation (2.3) has the explicit form 

d L v - l  

A(z)= n n [I+zAd(k)l (2.4) 
u = l  k.-0 

where the eigenvalues Ad(k) of the matrix A = C/z depend on the boundary conditions. 
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Thus, for fully periodic boundaries one has 
2mk, A d ( k ) = 2 d - 2  1 COS-. 

”=I L” 
We will need also the explicit expressions for the eigenvalues of C/z under boundary 
conditions which are periodic in d ’  dimensions and free in the remaining d - d‘  
dimensions, 

or periodic in d’ dimensions and antiperiodic in the remaining d - d’ dimensions, 
2xk,  d m(2kV+1) 

Xd,+(k)=2d-2 1 COS-- 2 1 cos (2.7) 

Duplantier and David 181 have investigated an equivalent model in two dimensions 
and argued that the model can be reduced to massive two-dimensional free field theory, 
critical at zero mass (infinite fugacity z). 

The crucial property of the CMD model in two and higher dimensions is the behaviour 
of the correlation functions which decay algebraically at the critical point and exponen- 
tially elsewhere. 

Re!owi we sha!! consider the critical properties of  the CMD model to obtain the 
logarithmic corrections to the free energy and to check the amplitude-exponent relation 
for periodic and antiperiodic boundary conditions. 

U = ,  L, u = d ’ + l  L” 

3. Logarithmic corrections 

At the critical point z+m, the partition function (2.4) can be written in the form 

A(z) = (z) N d A  ( 3 . 1 )  
where 

will be considered as a renormalized critical partition function. The prime in the 
product in equation (3.2) means that the zero mode term has been excluded. 

Here we confine ourselves to the logarithmic finite-size terms in the free energy: 

F=-InA.  (3.3) 
For simplicity of notation, we assume in the remainder of this section that L, =. . . = 
Ld = L. 

As can be seen from the finite-size analysis of Duplantier and David [8], in the 
case d = 2, terms proportional to In L arise in equation ( 3 . 3 )  due to cofactors in the 
partition function A which involve k-vectors with one non-zero component. These 
factors are evaluated exactly at any finite L 3> 1, both under periodic and free boundary 
conditions, with the aid of the identities 

L-1 L-l 

kt= l  h - 1  
A2,2(kl,o)= j i - 2 c o s ( i ~ k , j i j j = i ~  i3.4aj 

L-1 L-1 

k t = l  *I-I 
n A2,0 (k l ,0 )=  n [ 2 - 2 c o s ( 7 r k l / L ) I = L ~  (3.46) 
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Here we consider the general case of a system periodic in d’ dimensions and having 
free boundaries in the remaining d - d’ones. Our derivation is based on the observation 
that 

d‘> 0 
Ad.c(k) [ 
and implements the following generalizations of identities (3.4): 

Ad--l,d,-l (k2, . . . , kd) + Z  -2 c o s ( 2 d l / l )  
(3.5) hd-l+p(kI,.. ., kd-1)+2-2COS(vkd/L) d - d ‘ > O  

L-l  

k = I  n [A2+2-2 ~0~(2? ik /L) l  = K ~ @ ’ ( A )  

n [ A 2 + Z  - 2 COS( ~rk /L)]  = A-’&’(A) 

(3.6a) 

(3.66) 
L-l  

k = I  

where 

4p’(A) = { 2 - L [  ( A 2 +  4)’”f A]“ - 2L[(A2f4)1/2+ A ] - L ] 2  

4y’(A) = ( A2+4)-1/2{2-2L[(A2+ 4)’12+ A]2L- 22L[ (A2+4)1/2 + A]-2L}. (3.7) 

Equations (3.6) and (3.7) for any real A # 0 and integer L> 1 follow from a known 
trigonometric identity [13]. Note that, in the limit A + O + ,  identities (3.6a) and (3.6b) 
reduce to identities (3.4a) and (3.4b), respective!y. 

Now we start by splitting the free energy (3.3) into the sum 

where 

D = { l ,  ..., d ]  D , = ( E , . . .  , d ’ ) s D  d ‘ a  1 
d’=O 

and iSi denotes the number o i  eiements in the set S. 
It is convenient to introduce the factors 

L-1 

Qm&)= lI n A,,(k) 
YES *.=I 

L-1 

v e S  k.-1 
R!$L) = n n 4g)(Ak!i(k)) 7’0,1 

which depend on the integers 

(3.9) 

(3.10) 

(3.11) 

n = p  p = (S n D’I (3.12) 

and on the size L. Then: (i) if n a 2 andp a 1, we use equation (3.6a) with A = A!,?l,p-l(k) 
and obtain 

(3.13) Q n , p ( W  = ( Q n - i . p - i ( L ) ) -  I R n - i , p - B ( L )  ( 0 )  

(ii) if n a 2 and p = 0, we use equation (3.66) with A = A!,?l.o(k) and obtain 

Q..o(L) ( Q ~ - i , ~ ( ~ ) ) ~ l ’ * R ~ l ! ~ , o ( L )  (3.14) 





4304 J G Brankov and V B Priezzhev 

The partition function A,(m, n )  for monomer-dimer configurations containing the 
given pair of dimers can be expressed by a matrix D as 

A,(m, n )  = det(D+ I). (4.1) 
The matrix D differs from C by the elements D,,,,. and D.,.., which are equal to 

zero if n '#  n + e, and m'# m + e,, and by the diagonal elements Dn," = D,,,,, = z. 
Accordingly, the two-point correlation functions K,(m, n )  are given by 

K,(m, n ) = A , ( m ,  n)/A(z).  (4.2) 
We start evaluating K,(m, n) in the d = 2 case with periodic boundary conditions. 

Let us put L, = L, L2+m and consider two orientations of dimers: e, (figure 2(a)) and 
e, (figure 2(b)) for a pair of dimers separated by the interval Re,. Evaluating the 
determinants in equation (4.2) by using Fourier transformations we find the R-depen- 
dent part of the correlation functions in the form 

K,,L(R) = -($)'Q;.L(R) (4.3) 

where 

1 L-, 2- 2 cos Ra  -cos(R + 1)a -cos(R - I)a 
(4.4) 2-cos(2?rk/L)-cos a 

QI,L(R)=- C 1 d a  2TLk-O 0 

and 

where . ,-. rZs I " .  . I  
I - ~ .  cos(n t i ) a  -cos E a  

Q2.L(R)=X io J, dm 2-cos(2?rk/ L) -cos a ' 
The integrals over LI in equations (4.4) and (4.6) can be evaluated exactly [14], thus 
y i e I d i n g 

and 

1 2 L-l 
Q2JR)= ---- (1+cL(k))-'exp(-RIncL(k)) L Lk-I 

with 

cL(k) = a,(k) + (a:(k) - 1)"z 

a,(k) = 2 - cos(2vk/ L). 

(4.7) 

(4.8) 

(4.9) 

1 a 1  I D I  

Flgure 2. A pair of parallel dimen, separated by R lanice spacings, oriented in ( a )  the 
perpendicular and ( b )  the parallel direction with respen to the axis of an infinitely long 
block of width L 
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Now, it is readily seen that the leading-order contribution in the sums over k when 
R + m at fixed L >) 1 comes from the terms with k = 1 and k = L - 1, thus giving 

Q l , L ( ~ )  = - 4 ? r ~ - ~  e-21rR'L (4.10) 

and 

QZ,=(R) -2,I-'-4L-' e-2nRIL, (4.11) 

Note that the term -2L-' in equation (4.11) gives an R-independent contribution 
to the dimer-dimer correlation function which should be omitted from the final 
expression for KI.L(R). The origin of this background term lies in the tree-like nature 
of the constrained dimer configurations: the connectivity condition implies the existence 
of a trunk in the tree. The trunk has the form of a self-avoiding walk passing through 
CdLlL U">> D C C L l U L l  pcIpc,L"Lrur'a, L U  L U G  r,rnr,rrcry ,"I& "IIOL.LLULI. L ,IUD, 111 CdL.1, S U U 1  

cross section there should be at least one dimer belonging to the trunk which gives a 
non-vanishing finite-size contribution to the correlation function. 

After substitution of equations (4.10) and (4.11) in equations (4.3) and (4 .9 ,  
respectively, we obtain 

^^^I. ^_^^^ "-A:.... _^__^_A:-..,..-.A .Lm :..c-:.-,.. I--- A:--".:-- TI-.." :.. ^^^L ___^I. 

A ,  = 4?r A2=2?r. (4.12) 

The bulk correlation functions follow in the limit L+ m, R fixed, by replacing the 
sums over k on the right-hand sides of equations (4.7) and (4.8) by the corresponding 
integrals: 

1 *- 1 - c ( a )  
QI.~R)=--[ dai+c(a)  exp(-R In c ( a ) )  

0 

2 n  

Q2,-(R)= -'I da(l+c(a))- lexp(-R In ~ ( a ) )  
T O  

where 

c(a)  = i-cos a +[(i -cos a j i j  -cos a)j1'2. 

Hence, the leading-order asymptotic behaviour as R + m is 

Ql.-(R)= -(rrR2)-' 

Q z . m ( R )  =-2( TR)-' 

Thus, after substitution in equations (4.3) and ( 4 . 9 ,  respectively, we obtain 

(4.13) 

(4.14) 

x , = 2  x * = l .  (4.15) 

Therefore, the amplitude-exponent relations for the two correlation functions 
considered agree with equation (1.3): 

Ai = 2nxi i = l , 2 .  (4.16) 

Let us turn now to the three-dimensional case. Set L, = L2 = L, L, + m. Consider a 
pair of dimers oriented in direction e, and separated by the vector Re,, and a pair of 
dimers oriented in direction e, and separated by the vector Re,. 
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The R-dependent parts of the two correlation functions again take forms (4.4) and 
(4.9, where in the case of periodic boundary conditions 

3 L-l  L-l  2.7 2 cos Ra  -cos(R+l)u -cos(R-1)u 
QI.L(R)=- 8vL2  k , = O  1 x 1  k2=0 o da l+A2,2(k)/2-cos a 

(4.17) 
3 L-I L-l  cos(R+i)a-cos Ra  

l+A2,2(k)/2-~0sa ’ 
Q ~ . L ( R ) = - ~  Z Z (:-da 2‘TL k I - 0  k2=0 

Again the integration over (I can be performed exactly, the result being 

where the prime indicates that the term with k = 0 has been omitted from the sum, and 

(4.19) 

1 is given by the 

cL(k)= a , ( k ) + ( ~ t ( k ) - l ) ” ~  

aL(k) = 3 - cos(2?rk,/ L) - cos(2?rk2/ L). 

Hence, the leading-order asymptotic form when R +CO at fixed L 
terms with k=(O,l), (0,L-l), (1,O) and (L-1,O): 

&(R) -6?rL-’ 

C & ( R ) I . - ~ L - ~ - ~ ~ L - ~  
(4.20) 

Therefore, after substitution in equations (4.3) and (4.9, we obtain A, = 4.77 and 
A2 = 2.77. 

In the bulk limit L+CO one obtains from equations (4.18) 

277 3 2a 
Q2.-(R) = -3 1 d a  

where 

dP( l+c(a ,  P ) ) - l  exp(-R In c(a.B)) 
0 0 

c(a, p )  = 3 -cos a -cos p + [(2 -cos LI -cos p)(4 - cos a -cos P ) ] ?  
Therefore, the leading-order asymptotic form as R -+ CO is 

QIJR) -3(.77R3)-’ 

Q2JR) = -6( ?rR2)-’ 

and from equations (4.3), (4.5) and (4.23) it follows that xI = 3 and x2 = 2. 
Hence, the amplitude-exponent relations 

A I  = (4/3)?rx1 A2 = mx2 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

are in contradiction to equation (1.11). 
Henkel [IO] noticed a breakdown of relation (1.3) in the d = 3 case under periodic 

boundary conditions and suggested that the relation is restored under antiperiodic 
boundary conditions. For the model considered here, the antiperiodic conditions in 
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directions e, and e2 imply sign inversion of the matrix elements Cj,j which connect 
vertices on opposite edges of Lf3 oriented in the given directions. In this case, instead 
of the pure tree-like problem, we obtain a model containing a number of closed loops 
of period L, or L2 with tree-like branches attached to them. 

For antiperiodic boundary conditions in the two finite dimensions we have 

Proceeding in complete analogy with the case of periodic boundary conditions, we 
obtain after the integration over (I 

(4.26) 

&(k) = 3  - c o s [ ' R ( ~ ~ ~ +  1)/  L] -~0~[v (2k ;+  1)/ L] 

&(k) = &(k) + (d:(k) - 1)'I2. 
(4.27) 

Hence, in the regime R + CO at fixed L >> 1 we obtain up to leading order 
Q, .~(R)  3'R21/2~-3 e--21'2-R/L 

Q2.L(R) x -12L-2 e-2"'nR/L, 

Therefore, the substitution in equations (4.3) and (4.5) gives A ,  = A ,  = Z " 2 ~ .  
Thus, we obtain now the amplitude-exponent relations 

23/2  2' /2 

A2=--?ix, 
3 

A,  =- T X ,  
3 

(4.28) 

(4.29) 

which are again in contradiction to equation (1.11). 

5. Discussion 

We have presented an exactly solvable model, the CMD model, which is critical in the 
limit of infinite dimer activity, when it coincides with the ST model considered in 
two dimensions by Duplantier and David [8]. The CMD model permits an exact 
solution for the logarithmic finite-size corrections in the .free energy at arbitrary 
dimensionality d. 

As mentioned in the introduction, the only other model for which analogous results 
are available is the Gaussian model in the near-critical regime mL+ 0 [7]. By comparing 
equations (1.4) and (1.6) with equation (3.20) we see that the universal amplitudes of 
the In L terms in the two models differ by the constant factor -2 for any d, both under 
periodic and free boundary conditions. However, the free energy of the Gaussian 
model diverges in the zero-mass limit m + 0 unless the zero-eigenvalue mode is removed 



4308 

manually. The above proportionality of the universal amplitudes is due to the fact that 
the partition function of the critical Gaussian model with the zero-eigenvalue mode 
omitted, 

J G Brankoo and V B Priezzhev 

is simply related to the partition function of the ST model A (see equation (3.2)), namely 

A =  (27r)(N-')(Z' c )-*. 

It should be emphasized, however, that in the CMD model the exclusion of the 
zero-eigenvalue model takes place naturally, in the process of solution by the Kirhhoff 
theorem. 

In conclusion we note that in the presented exactly solvable model the amplitude- 
exponent relation holds in two dimensions and breaks down in three dimensions, 
under both periodic and antiperiodic boundary conditions. 

A possible explanation of this breakdown consists in the different role the antiperi- 
odic boundary conditions play in the spin models considered by Henkel and in our 
combinatorial problem [ 141. In  the case of the spherical and king models, the antiperi- 
odic boundary conditions create a real interface between domains of spins with opposite 

domains with different states may be created by similar rotation of variables. In contrast, 
the CMD model considered here is a tree-like graph model which we do not know to 
have any reasonable spin representation. In this case antiperiodicity implies merely 
the appearance of closed loops in the graph; the latter cannot be considered as interfaces 
between domains of different phases. 

Presumably, the consideration of open boundary conditions in the CMD model and 
a comparison with analogous results for spin models would answer the question about 
the status of the amplitude-exponent relation in three and higher dimensions. 

directinr?. !I! the Il?ere gene..! sit%?tion of the Pntts mnde!, 8" inte.f.ce betweefi 
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